
GeoLM: Performance-oriented Leader Management
for Geo-Distributed Consensus Protocol

Duling Xu†§, Dafang Zhang†§, Tong Li†*, Yunpeng Chai†, Zegang Sun†, Weiming Li†,
Yangfan Liu†, Qipeng Wang†, Jiaqi Liang‡, Yang Ren‡, Wei Lu†, and Xiaoyong Du†

Renmin University of China†, Huawei‡,

Abstract—The global business of transnational enterprises
demands geo-distributed databases, where the leader-follower-
based consensus protocols are the key to guaranteeing consistency
of replicas spread across regions. Compared with traditional
databases running in a single data center, determining which
node is the leader in consensus protocol has a greater per-
formance impact in geo-distributed databases running across
multiple data centers. However, the performance of legacy
leader management is far from satisfactory due to the network
and application dynamics (e.g., network delay, node popularity,
operation read-write ratio). This paper proposes GeoLM toward
performance-oriented leader management for geo-distributed
consensus protocols. GeoLM captures the network and ap-
plication dynamics and proactively conducts seamless leader
handovers with bounded switching costs. Our geo-distributed
experimental results show that GeoLM improves performance
up to 49.75% over the baselines (e.g., Raft and Geo-Raft) and
achieves considerably good performance compared to state-of-
the-art consensus protocols (e.g., SwiftPaxos, CURP, and EPaxos).

Index Terms—Geo-Distributed Database, Leader Management,
Log Replication

I. INTRODUCTION

Distributed databases, with their high scalability, high avail-
ability, and cost-effectiveness, are widely applied in fields
such as cloud computing and big data analytics [1]–[21].
Traditional distributed databases are typically confined within
a single data center [4]–[9]. However, with the increasing
trend of data circulation in the digital economy era, transna-
tional industries including banking, e-commerce, and cloud
providers often operate multiple data centers. For instance,
Huawei [10] and Amazon [11] span 93 and 105 availabil-
ity data centers within 33 geographic regions, respectively.
Recently, distributed databases have evolved from isolated
services limited to single data centers towards collaborative
services spanning multiple data centers. For example, Google
BigQuery Omni [12] and Snowflake [13] connect data ware-
houses across Google Cloud, AWS, Azure, and other cloud
providers, enabling real-time interactions during user queries
across multiple clouds. Kubernetes Federation [14] connects
multiple Kubernetes clusters over the Internet, where functions
and data may reside in different regions or across differ-
ent public cloud providers. In China, emerging companies
like DatenLord [15], which implements distributed database

This work is supported by the NSFC Project (No.62202473,62441230,
No.U23A20299, and No.6241101193), the CCF-Huawei Populus Grove Fund
(No.CCF-HuaweiDB202308). §The first two authors contributed equally to
this work. *Tong Li is the corresponding author (tong.li@ruc.edu.cn).

systems ensuring strong consistency in data access across
different data centers or cloud providers. These new business
models are driving the development of a new paradigm for
geo-distributed databases.

Consensus protocols such as Paxos [22], Raft [23], or their
variants [24]–[34] have been widely used in modern distributed
databases such as GaussDB [35], TiDB [36], PolarDB [37],
Spanner [6], Aurora [38], and Neon [39]. These consensus pro-
tocols apply a leader-follower paradigm to guarantee replica
consistency, where a leader node is responsible for handling
client requests. In contrast, other nodes participate as followers
to synchronize operation logs. The influence of leader selection
on performance is negligible in traditional databases operating
within a single data center. However, our study reveals that in
geo-distributed databases, the role of the leader significantly
impacts system performance (see §III-A).

Traditional consensus protocols perform well within the data
center network [33], [40]. However, geo-distributed consensus
protocol runs over a wide-area network (WAN) with various
application requirements, where the best leader selection is
challenging due to the network dynamics and application
dynamics. First, the link delays between the leader to the
followers significantly impact the log-replication latency. This
reveals that leader selection should capture network dynamics
in terms of network delays among all nodes. Second, selecting
a leader node with more popular replicas or write operations
reduces forwarding delays among nodes, improving system
performance. This reveals that leader selection should capture
application dynamics in terms of node popularity and read-
write ratio of operations (see §III-B). However, the legacy
ways of leader management typically focus either on network
dynamics or application dynamics alone [25], [26]. In sum-
mary, the legacy leader management schemes are far from
satisfactory for geo-distributed consensus protocols.

To tackle these issues, we introduce GeoLM1, which consid-
ers both the network dynamics and application dynamics and
proactively conducts seamless leader handovers with bounded
switching costs. First, GeoLM periodically selects a target
node according to a utility function of link delays, node pop-
ularity, and operation read-write ratio. This ensures GeoLM’s
network and application awareness. Second, GeoLM adjusts
the leader switching window where the target node’s utility
remains positive. This avoids leader-switching oscillations and

1GeoLM is named after Geo-distributed Leader Management.

bounds GeoLM’s overall switching costs. Third, GeoLM
allows the current leader node to pre-synchronize logs with a
target node that has fallen behind. This capability can aid the
target node in winning the election and ensuring consistency
in the consensus protocol.

We have implemented the GeoLM prototype in a dis-
tributed database based on ETCD and integrated it into the
maintained Raft protocol [41]. GeoLM extends the leader
management module without affecting the execution processes
of the storage layer and database layer, thus ensuring com-
patibility with log-replication-based variants. We then con-
duct evaluations through both trace-driven simulation and
testbed deployment. Evaluation results show that GeoLM re-
duces average/worst-case transaction latency over the baselines
Raft by up to 30.77%/49.75% and Geo-Raft [27] by up to
23.97%/24.62%, respectively. GeoLM also achieves consider-
ably good performance compared to the most recent leader-
management-based approach SwiftPaxos [26] and the state-of-
the-art log-replication-based approaches such as CURP [28]
and EPaxos [31]. This serves as a strong validation of GeoLM.

The paper is organized as follows. §II overviews the related
work. §III introduces the background and motivates GeoLM.
The overview of GeoLM is depicted in §IV. The design and
implementation are elaborated in §V. In §VI, we evaluate
GeoLM. Finally, §VII concludes the paper.

II. RELATED WORK

This section provides an overview of methods to enhance
the performance of geo-distributed consensus protocols.

Optimization on leader management. As for leader man-
agement, several variants based on Paxos/Raft are proposed
to enhance the communication efficiency of the consensus
protocol [24]–[26], [42]. For example, Xu et al. [24] pro-
pose Raft-Plus to use inter-node network delay for leader
selection. Vukolic et al. [25] proposed the Droopy/Dripple to
strategically configure the leader ensemble based on historical
workload and system response latency to better fit uneven
workload conditions. Ryabinin et al. [26] propose SwiftPaxos,
which changes the election process using two-round voting,
accelerating the election process in case of replica divergence.
These works focus either on network dynamics (e.g., Raft-
Plus) or application dynamics (e.g., Droopy/Dripple, Swift-
Paxos) alone.

Optimization on log replication. In terms of log replication,
the fundamental optimization strategy involves enhancing per-
formance through reducing communication requirements [27]–
[34]. Among them, Geo-raft [27], CURP [28], and Pig-
paxos [29] fall into the category of introducing new roles
(e.g., secretary, observer, relay) to ease leader performance
bottlenecks. Fast Paxos [30], EPaxos [31], Dpaxos [32], Cock-
RoachDB [33], and GeoGauss [34] fall into the category of
reducing the long-distance communication times to shorten
global database transaction time. These studies, however,
demand intrusive modifications to the logic of log replication,
limiting their applicability. For example, CURP and EPaxos

Node 1 Node 2 Node 3 Node 4 Node 5

110

115

120

125

Th
ro

ug
hp

ut
 (r

eq
s/

se
c)

Average: 117.86

Max: 122.90

Min: 112.60

9.15%

(a) Intra data center.
Node 1 Node 2 Node 3 Node 4 Node 5

40

50

60

70

Average: 49.10

Max: 69.90

Min: 35.70

95.80%

(b) Inter data center.

Fig. 1: An example of performance change when changing
the leader node over intra-datacenter and inter-datacenter
links. The X-axis represents the leader node.

200

220

240

260

Th
ro

ug
hp

ut
(re

qs
/s

ec
)

Leader Change

Original Raft
Modified Raft

0 100 200 300 400 500
Time (s)

60
80

De
la

y
(m

s) Sharp Increase

Fig. 2: An example of how delays impact performance.

rely on the assumption of commutativity of operations and
adapt to limited scenarios. Essentially, these variants operate
independently of our proposed GeoLM, which can seamlessly
integrate with these variants to enhance performance further.

III. BACKGROUND AND MOTIVATION

A. Leader Selection is More Crucial in Geo-Distributed Con-
sensus Protocols

In a consensus protocol with the leader-follower paradigm,
the leader handles client communication and coordinates the
replication and synchronization of data replicas on other
follower nodes. In general, choosing a better node as the leader
positively correlates with performance. However, compared
with traditional consensus protocol running in a single data
center, leader election in geo-distributed consensus protocol
has a greater performance impact. To explain this more
clearly, we modified ETCD-Raft [41] to give an example
of performance change when changing the leader node over
intra-datacenter and inter-datacenter links. Figure 1 shows the
results. The impact of leader selection on performance is
unremarkable for traditional databases running in a single data
center (a better leader only improves 9.15% performance).
However, when nodes are spread across regions in a geo-
distributed database, the system performance is more crucial
to who is the leader node (a better leader improves 95.80%
performance). This reveals that leader selection is more crucial
in geo-distributed consensus protocols.

B. Leader Selection Should Capture Network Dynamics and
Application Dynamics

When operating a geo-distributed consensus protocol, we
see multiple challenges in determining the best leader selec-
tion. We will elaborate next.

Client

1

2

3

(a) Popularity (b) Completion time under different node as leader.

Popularity = 50%

Popularity = 30%

Popularity = 20%

1RGH���� 1RGH�����������1RGH���DV�OHDGHU

��

��

��

&R
P
SO
HW
LR
Q�
7L
P
H�
�P
V�

����

��

��

����

��

��

��

1RGH�� 1RGH�� 1RGH��

Fig. 3: An example of how node popularity impacts
performance. (a) shows an example of a cluster with
different popularity. (b) shows the time required for each
node in the cluster to complete its requests when the cluster
leader is controlled (from left to right, Node 1, Node 2,
and Node 3 as the leader).

Observation #1 (Network Dynamics): Leader selection de-
pends on network delays among all nodes. Geo-distributed
consensus protocol runs over a WAN whose dynamics are
non-negligible [43]. The network dynamics is manifested in
three aspects. (a) Enlarged value of delays. The round-trip
time (RTT) of an inter-data-center link (e.g., 100 ms) is over
three orders of magnitude higher than that of an intra-data-
center link (e.g., 10 us). (b) Enlarged difference of delays.
The RTT differences among nodes are tens to hundreds of
milliseconds (e.g., RTT = 20 ms vs. RTT = 200 ms), which
is non-negligible compared with the node processing delay.
(c) Enlarged fluctuation of delays. The optimal leader may
become sub-optimal due to RTT fluctuation caused by network
congestion or route change. Figure 2 gives an example of
performance change when changing the leader node under
network deterioration (a sharp increase in the total delay
among all nodes). We modified the ETCD-Raft to change its
leader node at 200 s. Figure 2 shows that the performance
impact from delay deterioration can be significantly reduced.
This reveals that leader selection should consider network
delays among all nodes. Geo-distributed consensus protocol
also serves applications with dynamic characteristics. The
application dynamics is manifested in two aspects: node
popularity and read-write ratio of workload. We discuss it next.

Observation #2 (Application Dynamics): Leader selection
depends on node popularity. Node popularity refers to the
measure of how frequently a node is accessed or utilized for
operations such as reads or writes. Under identical network
conditions, nodes assuming the role of leader experience
performance variations based on their respective levels of
node popularity. Specifically, selecting a leader node with
more popular replicas reduces forwarding delays among nodes,
improving the system performance. To explain this more
clearly, we show an example of three nodes with the same
network delays (i.e., RTT = 20 ms) but with different node
popularity (i.e., 50%, 30%, and 20%, respectively) in Figure 3.
It has been observed that when Node 1 (with 50% popularity)
acts as the leader, the latency is 34.7% lower compared to
when Node 3 (with 20% popularity) acts as the leader. This

ClientClientClient

ClientClient Client

T1 Redirect Write
T2 Append entries
T3 Appended reply
T4 Committed reply

2 3 2 3 2 3

R:W = 100:0

R:W = 0:100
Leader

Write

T

Read

T

T

T2

1 1 1
Leader

T1

T3

T4

Write
T2
T1

T1
T2

T1 Redirect Read
T2 Committed reply

T1 Append entries
T2 Appended reply

(a) Example of nodes (b) Leader only reads (c) Leader only writes

Read

Fig. 4: An example of how the read-write ratio impacts
performance. The read-write ratio on Node 1 is 100:0, and
on Node 2 is 0:100. The red text markers represent the
time required for write requests, and the blue text markers
represent the time for read requests.

reveals that leader selection should prioritize nodes with a
higher popularity.

Observation #3 (Application Dynamics): Leader Selection
depends on the read-write ratio of operations. The access
pattern can fluctuate over time due to shifts in application
usage, business needs, or seasonal demands. Where read
operations can be handled directly by either the leader or
any followers while write operations require a leader to
coordinate proposals among followers, achieving agreement
through a quorum, and ensuring durability through replicated
logs. Under identical network conditions, nodes assuming the
role of leader experience performance variations based on
their read-write ratio of operations. Specifically, selecting a
leader with more write operations reduces forwarding delay
from followers to the leader, improving system performance.
To explain this clearly, Figure 4 (a) shows an example of 3
nodes with the same network delays (i.e., RTT = 2T) but
with different read-write ratios (i.e., the read-write ratio on
Node 1 is 100:0, and the read-write ratio on Node 2 is 0:100).
When Node 1 acts as the leader (see Figure 4 (b)), the latency
is doubled compared to when Node 2 acts as the leader
(see Figure 4 (c)). This reveals that leader selection should
prioritize nodes with a lower read-write ratio.

C. Challenges

How to determine the target node? A target node is the node
that has the potential to be the best leader. Our observations
have shown that leader selection should consider network
dynamics (i.e., network delay) and application dynamics (i.e.,
node popularity, read-write ratio). Generally, the system per-
formance gain after a node becomes the leader is positively
related to a utility model, where the utility function should
simultaneously consider factors including network delay, node
popularity, and read-write ratio. In this paper, GeoLM deter-
mines the target node if it achieves the highest utility value.

How can the target node be voted the leader? The target
node with the highest utility may lose the election during the
election process. This can be attributed to the outdated log of
the target node. To ensure the target node receives votes from
a majority of the nodes, the log of the target node should be

up-to-date before sending out request-to-vote RPCs (Remote
Procedure Calls). In this paper, GeoLM proactively switches
the leader regardless of whether the current leader fails or
not, distinguishing it from legacy consensus protocols that
only initiate leader changes in response to leader failures. To
ensure the target node is voted as the leader, GeoLM takes
full advantage of the present leader node to pre-synchronize
logs where the target node has fallen behind.

How to control the frequency of leader switching? A small
frequency of leader switching may fail to respond promptly to
network and application dynamics. In contrast, frequent leader
switching may induce excessive switching costs, degrading the
system’s performance. Assuming that each leader switching
requires a fixed cost, the total cost induced by GeoLM is
proportional to the switching frequency. In this paper, GeoLM
adopts a damping mechanism to dynamically adjust the leader
switching window to control the frequency of leader switching.
The goal is to adapt to network and application dynamics with
bounded switching costs.

IV. GEOLM OVERVIEW

The primary goal of GeoLM is to achieve consistently high
performance by switching the leader node according to the net-
work and application dynamics. In this section, we first model
the utility function for each node following its assumption of
leadership, and then we introduce the framework of GeoLM
based on the utility model.

A. Utility Modeling

We define the node utility u as the performance improve-
ment when it becomes the leader. For a distributed database
consisting of N nodes, the utility of a node n is:

un =

N∑
i=1

Pi · (Cleader
i − Cn

i) (1)

where Pi refers to the popularity of node i, Cleader
i represents

the completion time of requests reaching node i with the
present leadership, and Cn

i represents the completion time of
requests reaching node i when node n acts as the leader.

According to the way of handling read and write opera-
tions in consensus protocols, Cleader

i and Cn
i can be further

computed as follows:

Cleader
i = Ri · T leader

i +Wi · (τleader + T leader
i) (2)

where Ri and Wi refer to the read ratio and write ratio of
operations, respectively. Particularly, we have Ri + Wi = 1.
T leader
i represents the RTT between node i and the leader

node, τleader represents the commit latency of node i with the
present leadership. Similarly, we have

Cn
i = Ri · Tn

i +Wi · (τn + Tn
i) (3)

where Tn
i represents the RTT between node i and n, τn

represents the commit latency of node i with the leadership
of node n.

Target Set

Popularity

Target
Selection

Network
Delays

Leader
Handover

Geo-Distributed
Consensus Protocol

Read-Write
Ratio

Switching
Damping GeoLM

Leader
Election

Network Storage Services (timer/scheduler/thread pool…)

Geo-Distributed Database

Log
Replication

Target Node

Candidate

Node
State Machine

Fig. 5: The framework of GeoLM.

When substituting Equations (2) and (3) in (1), the utility
of node n can be modeled as follows:

un =

N∑
i=1

Pi ∗ [(T leader
i − Tn

i) +Wi · (T leader
median − Tn

median)]

(4)
where T leader

median denotes the median link delay from the leader
to all followers, and Tn

median denotes the median link delay
from node n to all other nodes. Here we argue that that
applying the median link delay Tmedian to approximate the
commit latency τ is reasonable. This is because the leader
must wait for confirmation from at least half of all followers.

B. GeoLM Framework

Figure 5 illustrates the general framework of a geo-
distributed consensus protocol, where GeoLM adds three com-
ponents (colored with red blocks) namely: (1) Target Selection,
(2) Switching Damping, and (3) Leader Handover. These
additional components cooperate with the existing modules
(colored with purple and blue blocks) in the legacy consensus
protocol, aiming to achieve high-performance leader manage-
ment for geo-distributed databases.

Target Selection. The input of this component is the RTT
matrix between each node, the popularity of each node, and the
read-write ratio of operations. These states are continuously
updated at the leader node via interaction with follower nodes.
According to Equation (4), the component first calculates the
utility values for all nodes. Next, it identifies nodes with utility
values exceeding 0 to compose a designated collection (termed
the target set) as the output. This ensures GeoLM’s network
and application awareness (see §V-A).

Switching Damping. The target set may contain multiple op-
tional nodes. The utility values of nodes may also vary dynam-
ically (e.g., sometimes being greater than 0 and other times
less than 0). This may result in leader-switching oscillations.
To tackle this issue, GeoLM introduces a component, called
Switching Damping, to select a stable node with a positive
and high utility value. Specifically, the component dynamically
adjusts the leader switching window (i.e., observation period)
where the target node’s utility value should be kept to exceed
0. This also controls the frequency of leader switching and
bounds GeoLM’s overall switching costs (see §V-B).

Collected
Information

Delay Matrix

Read-Write
Ratio Vector

Popularity Vector

54321

𝑻𝟏𝟓𝑻𝟏𝟒𝑻𝟏𝟑𝑻𝟏𝟐01

02

…3

04

0𝑻𝟓𝟒𝑻𝟓𝟑𝑻𝟓𝟐𝑻𝟓𝟏5

1

2 3

4 5
𝑻𝟏𝟓…𝑻𝟏𝟑

RTT to peers

Read-Write
Ratio 𝑾𝟏

Request
Number 𝑸𝟏	

W5…W1

P5…P1

1

2 3

4 5

Node 1

Node 5

…

Collected
Information

𝑻𝟏𝟐

Utility
Computation

10001
Utility Vector

Target Set =
{ Node1, Node 5 }

𝑼𝒏 =
∑ 	𝑷𝒊𝑵
𝒊#𝟏 × [(𝑻𝒊𝒍𝒆𝒂𝒅𝒆𝒓—𝑻𝒊𝒏)

+
𝑾𝒊×(𝑻𝒎𝒆𝒅𝒊𝒂𝒏𝒍𝒆𝒂𝒅𝒆𝒓 —𝑻𝒎𝒆𝒅𝒊𝒂𝒏𝒏)]

Fig. 6: An example of target selection workflow.

Leader Handover. Before the target node becomes the can-
didate for leader election, the Leader Handover component
enables the present leader node to pre-synchronize logs where
the target node has fallen behind. Specifically, GeoLM applies
a modified Node State Machine where the present leader
acts as the Helper Node for proactive leader switching. This
can help the target node win the election and ensure the
consistency of the consensus protocol (see §V-C).

V. SYSTEM DESIGN DETAILS

This section elaborates on the design and implementation
of the specific modules in GeoLM.

A. Target Selection

Figure 6 gives an example of a five-node geo-distributed
database to better explain the workflow of the Target Selection.

First, for network delays, we’ve integrated application-
layer RTT estimation into the consensus protocol to adapt
to network dynamics. First of all, each node measures the
smoothed RTT from this node to all other nodes via the
heartbeat messages. Then the leader collects all the RTT
vectors from each follower via the RttProbeResp messages.
For instance, the RTT vector of Node 1 is < T 2

1 , T
3
1 , T

4
1 , T

5
1 >.

These RTT vectors ultimately converge at the leader node,
where it is reshaped into a delay matrix as shown in Figure 6.

Second, the read-write ratio should be updated according to
longer-term statistics where each follower counts the number
of read-operations (e.g., query) and write-operations (e.g.,
update and insert) on each node and periodically syncs the
read-write ratio to the leader. For instance, the leader can
maintain a write-ratio vector < W1,Wi, ...,W5 >, where Wi

denotes the write ratio of Node i.
Third, the node popularity cannot be estimated indepen-

dently by a single node. Instead, it requires the followers
(e.g., Node i) to periodically send the number of local requests
(from clients, denoted by Qi) to the leader. The leader then
calculates each node’s popularity accordingly. For instance,
the popularity vector is < P1, Pi, ..., P5 >, where Pi denotes
the popularity of Node i.

Finally, according to Equation (4), we calculate the node
utility as the performance improvement when it becomes the
leader. All nodes with positive utility enter the target set for
selection, such as Nodes 1 and 5 in Figure 6.

000 001 011 000 010 100 010 100 000 000 001 001 000

1

2 3

1:1
1:1
1:1

50%
30%
20%

Node
Delay

Read-Write
Ratio Popularity

Summarized Information

Utility
Computation

1
0
0

Utility Score

Window

𝟏:𝑼𝒕𝒊𝒍𝒊𝒕𝒚 > 𝟎
𝟎:𝑼𝒕𝒊𝒍𝒊𝒕𝒚 ≤ 𝟎	

Window Window

Handover executed Handover unexecuted Handover executed

Fig. 7: An example of switching damping.

B. Switching Damping

The design rationale of switch damping is to increase the
difficulty of switching if the handover is executed successfully
and reduce the difficulty of switching if the handover is
unexecuted for a period. We define this period as the damping
window (denoted by wnd), during which we decide whether to
enter the leader handover. Assume the initial window is wnd0
(typically proportional to the heartbeat cycle, see Figure 12(b)
for more details), during the damping window, we check if
there is at least one node whose utility value remains consis-
tently positive (i.e., u > 0). If yes, we double the damping
window (i.e., wnd = 2 ∗ wnd) and enter the leader handover
phase (as we will discuss in the next section); Otherwise, we
halve the damping window (i.e., wnd = min{wnd

2 , wnd0})
and keep the leader node unchanged. Switch damping can
control the switching frequency, thereby achieving a bounded
switching cost (see §VI-C for more details).

To explain this more clearly, Figure 7 further gives an exam-
ple of how the Switch Damping component works. Assume the
initial window is wnd0 = 2. Then we collect 2 utility vectors
< 0, 0, 1 > and < 0, 1, 1 > and find that the utility of Node 3
keeps positive during the damping window. Then the damping
window is doubled (i.e., wnd = 4) and Node 3 begins acting
as the role of the candidate node. After the leader is switched
to Node 3, we have to monitor 4 utility vectors < 0, 1, 0 >,
< 1, 0, 0 >, < 0, 1, 0 >, and < 1, 0, 0 > instead to check
if there is any node whose utility value keeps positive during
the damping window. In the example of Figure 7, we find
that none of the nodes meet the conditions (i.e., the target set
is ∅). In this case, the damping window will be halved (i.e.,
wnd = 2).

C. Leader Handover

The Leader Handover component modifies the leader
election process by introducing a scheme called Log Pre-
Synchronization. Specifically, we allow the leader to proac-
tively retrieve the latest log index from the target node and
update the logs accordingly, ensuring that the target node has
the same maximum log index as the leader at the current
term. This approach ensures that the target can more easily
get votes after initiating an election. After the leader sends
the log message to the target node, it steps down to become
a helper and stops sending heartbeats. When the target node
gets the log completion message, it already knows the leader

Requests
transfer

t 0P1

P4

P3

P2

P5

t 1

t 2

Election Win
t 3

t 5

①

②
③ ④

④ ⑤

⑤

Leader Candidate Helper Follower

⑤

Client Request

④

④

⑤

t 4

Fig. 8: An example of leader handover.

has stepped down and initiates an election without waiting
for the heartbeat timeout (usually 150-300 ms [41]). This
significantly reduces the cluster’s downtime caused by waiting
for the timeout, ensuring the target has a higher priority in
initiating the election.

To explain this more clearly, we give an example of the
entire handover process in Figure 8. Step 1⃝: At time t0, the
Leader Node (P1) decides to transfer leadership to P3 and
sends Msg.1 (as Message 1, the same below) to P3 to request
its latest log index. Step 2⃝: P3 receives Msg.1 at t1 and
responds to P1 with Msg.2, which carries P3’s latest log index.
Step 3⃝: At t2, after receiving the response, P1 sends Msg.3 to
P3, containing all the committed logs at the leader (from P3’s
latest log index to P1’s latest log index at t2), then steps down
to become a Helper Node, stopping heartbeats and beginning
caching client requests. P3 receives the committed logs from
P1 at t3 and begins to catch up. Step 4⃝: P3 then becomes
the Candidate Node and starts an election by sending Msg.4
to request votes. Step 5⃝: At t4, the other Follower Nodes
respond to the vote requests with Msg.5, casting their votes.
Eventually, P3 obtains the majority of votes and successfully
becomes the new leader.

It is worth noting that another follower (other than the target
node) might also reach the heartbeat timeout and initiate an
election, winning the election before the target node enters
the leader handover phase. In this case, GeoLM falls back to
the legacy way of leader election. Upon receiving a heartbeat
from the new leader, the Helper Node transitions to a Follower
Node and forwards all client requests from its term, ensuring
seamless handover without downtime.

D. Implementation

We implemented GeoLM in a distributed database based
on ETCD [41] and integrated it into the maintained Raft
protocol with less than 500 lines of code. Specifically, we
reuse the already existing messages such as Msg.Heartbeat,
Msg.Vote, and Msg.Granted. Msg.Heartbeat is used to
report the heartbeat, Msg.Vote (i.e., Msg.4 in Figure 8) is
sent from the candidate to request votes, and Msg.Granted
(i.e., Msg.5 in Figure 8) is sent by the follower/helper
to grant votes. We further define several new types
of messages such as Msg.RttProbe, Msg.RttProbeResp,
Msg.LeaderHandover, Msg.LeaderHandoverResp, and
Msg.LogsCompletion. The Msg.RttProbe messages are

starts up

Votes from majority

Receive higher term

Receive Msg.Heartbeat

Election Timeout

Heartbeat Timeout Receive Msg. LogsCompletion

Receive higher term

Follower Leader HelperCandidate

Receive Committed Logs

Fig. 9: The node state machine in GeoLM.

Fig. 10: A table of node state functions.

broadcasted periodically from each node in an all-to-
all paradigm, and the Msg.RttProbeResp messages are
sent to return timestamps for RTT sampling. Messages
Msg.LeaderHandover and Msg.LeaderHandoverResp (i.e.,
Msg.1 and Msg.2 in Figure 8) are sent when the leader
decides to transfer leadership. Msg.LogsCompletion message
is sent by the candidate to transition the leader into a helper.

The GeoLM implementation also modifies the Node State
Machine of the consensus protocol. As illustrated in Figure 9,
we introduce helper, a new node state in which the prior
leader node helps to cache requests before a new leader
wins in the election process. Particularly, when receiving
Msg.LogsCompletion message from the candidate, the leader
transitions to the helper. When receiving Msg.Heartbeat mes-
sage from a new leader, the helper transitions to the fol-
lower. During log pre-synchronization, when receiving the pre-
synced committed logs from the leader, the follower (i.e.,
target node) transitions to the candidate. Figure 10 further
lists the functions of nodes under different states. Particularly,
the helper stops sending Msg.Heartbeat and begins caching
requests instead of processing requests.

VI. EVALUATION

A. Experiment Setup

Setup. We evaluate GeoLM by prototyping it on our trace-
driven simulation and real-world testbed deployment.
• Trace-driven simulation: We utilize local servers with
Traffic Control (TC) netem [44] for our testing. To accurately
simulate complex network scenarios, including irregular ab-
solute delay variations and jitter, we base our simulations on
the trace data of the worldwide Amazon AWS cloud from an
open website [45]. By applying the tool of Piecewise Cubic
Hermite Interpolating Polynomial (PCHIP) [46], we generated
over 10,000 multi-dimensional link delay matrices (10x10)
that reflect the average link delays and distribution patterns
among the geo-distributed AWS servers. These delay matrices
are fed into TC to simulate the time-varying delays between
data nodes in our geo-distributed database.

0

100

200

300
La

te
nc

y
(m

s) Average

Workload A Workload B Workload C Workload D0

500

1000

La
te

nc
y

(m
s) Tail

Raft Geo-Raft GeoLM

Fig. 11: Overall performance.

• Real-world testbed deployment: We also deploy a seven-
node geo-distributed database across various regions to assess
performance in a real production environment. The server
locations and configurations are as follows: one server in
Guangzhou, two servers in Beijing (located in two different
data centers), and two servers in Shanghai (also in two
different data centers). Each server uses the HUAWEI Cloud
c3.xlarge.2 instance with Ubuntu 22.04 Server 64-bit, and is
configured with 4 CPU cores, 8GB of RAM.
Workloads. We conducted tests using the Yahoo! Cloud
Serving Benchmark (YCSB) [47] and focused on workloads
A, B, C, and D as primary test loads. Workload A consists of
50% reads and 50% updates. Workload B is made up of 95%
reads and 5% updates. Workload C consists entirely of reads
(100%) with a uniform access distribution. Lastly, Workload D
comprises 95% reads and 5% inserts, maintaining a read-write
ratio similar to Workload B while evaluating data insertion.
Schemes. We conduct a comparative performance evaluation
of GeoLM with state-of-the-art consensus protocols. First,
since GeoLM is integrated into Raft [23], it and Geo-Raft [27]
are considered as baseline. We also compare GeoLM with the
state-of-the-art Raft/Paxos variants including SwiftPaxos [26],
CURP [28], and Epaxos [31]. Among them, SwiftPaxos is a
representative leader-management-based approach to enhance
performance. CURP and Epaxos are two representative log-
replication-based approaches to enhance performance, whereas
Epaxos further represents the leaderless consensus protocol.

B. Overall Performance

Method. Overall performance is measured using the YCSB
benchmarking tool, where 20 clients simultaneously send
requests to the system, completing 100,000 operations in
120,000 records. We monitor the average latency per request.
Rigorously and fairly, we compared GeoLM with two baseline
schemes, Raft and Geo-Raft, which were both uniformly
implemented in the same ETCD project and compared under
the same network traces and workloads.
Results. The subfigure at the top portion of Figure 11 indicates
that GeoLM reduces the average transaction latency over Raft
by 29.74%, 30.77%, 15.64%, and 25.46% for Workloads A,
B, C, and D, respectively. In comparison to Geo-Raft, GeoLM
demonstrated enhancements of 23.97%, 11.89%, 2.08%, and
10.56% for Workloads A, B, C, and D, respectively. We also

 Throughput Frequency0

200

400

600

Th
ro

ug
hp

ut
 (r

eq
s/

se
c)

0

5

10

15

20

25

Fr
eq

ue
nc

y
(T

im
es

/h
)

w Damping
w/o Damping

(a) Damping vs. w/o damping.

32 34 36 38 40 42
Average Latencys (ms)

620

640

660

680

700

Ta
il

La
te

nc
y

(m
s)

GeoLM wnd0 = 20
GeoLM wnd0 = 80

GeoLM wnd0 = 40
Raft

(b) Parameter sensitivity.

Fig. 12: (a) Effectiveness of switching damping. (b) Per-
formance under different initial damping windows (wnd0)
with the unit of heartbeat cycle in GeoLM (1 heartbeat
cycle = 200 ms), and Raft (default).

examined performance under worst-case conditions, specifi-
cally the (99th percentile) tail latency. As illustrated in the bot-
tom portion of Figure 11, GeoLM’s tail latency improved over
Raft by 29.59%, 49.75%, 34.05%, and 23.21% for Workloads
A, B, C, and D, respectively. When compared to Geo-Raft,
the tail latency improvements are 19.81%, 18.33%, 4.19%,
and 24.62% for Workloads A, B, C, and D, respectively.
This demonstrates that the performance of geo-distributed
transaction processing can be greatly improved by GeoLM.
Additionally, we conducted experiments with more data nodes
(e.g., 9 nodes), and the results remained consistent.
Analysis. First, the improvement in average and tail latency
is most significant for Workload A when comparing both Raft
and Geo-Raft. This enhancement is due to GeoLM, which
considers the read-write ratio of nodes and allocates network
resources more effectively for write operations that require
more round trips, thereby boosting overall performance. Sec-
ond, performance improvements are relatively smaller under
all-read workload (i.e., Workload C). This limitation arises
because the optimizations for write operations in GeoLM
cannot be utilized in these scenarios. Instead, only basic
performance enhancements can be achieved by selecting more
efficient leader nodes.

C. GeoLM Deep Dive

This section first investigates the optimality, effectiveness,
and cost of the key components (i.e., Target Selection, Switch-
ing Damping, and Leader Handover) in GeoLM. Then we
discuss the performance impact of factors such as the read-
write ratio and popularity. Finally, we compare GeoLM with
more state-of-the-art Raft/Paxos variants.
Optimality of Target Selection. We assess the optimality of
the Target Selection component by introducing two metrics:
precision and recall. A precision rate of 100% indicates that
all selected target nodes are correct, meaning that these nodes
were optimal at the time of their selection based on subsequent
performance results. Recall measures the extent to which we
comprehensively select the correct optimal nodes and serves
as an auxiliary metric. We tested GeoLM in a fixed seven-node
cluster setup with consistent read-write ratios, trace-based
latency, and node popularity characteristics while monitoring

A B C
Workload

100

200

300

Av
er

ag
e

La
te

nc
y

 (m
s)

w/o Log Pre-synchronization w Log Pre-synchronization

Fig. 13: Effectiveness of Log Pre-Synchronization.
each node’s actual status and overall system performance.
We compared the performance data of each node when it
served as the leader without switching roles. Over three
experiments, each lasting about one hour, we observed 20
instances of leader handovers. Of these, all 20 were correct,
while 6 potentially correct nodes were not chosen, resulting
in a precision rate of 100% and a recall rate of 76.92%.
This indicates that our algorithm is highly accurate in node
selection, and our conservative approach considers the error
risks during handover, ensuring beneficial decision-making.
Effectiveness of Switching Damping. In this experiment, we
assessed the effectiveness of damping by controlling whether
the damping module was active and observing the performance
under both conditions. As shown in Figure 12(a), we validated
that damping is indeed effective in improving throughput(up to
20.34% better than not using) in GeoLM. Additionally, we ob-
served an interesting phenomenon: although we theoretically
bounded the switching frequency (relative to the number of
windows) in §V-B, the initial window size, wnd0, significantly
impacts performance in practice. Specifically, if the window
size is too large, it results in too few switches within the
total completion time, leading to suboptimal performance.
For example, in Figure 12(b), when wnd0 is 80 times the
heartbeat cycle, its average latency is worse than when wnd0
is 40 times the heartbeat cycle. Conversely, if the window
size is too small, such as wnd0 being 20 times the heartbeat
cycle, it results in an excessively high switching frequency,
incurring additional costs. This manifests as no significant
improvement in average latency but an increase in tail latency.
Based on our implementation tests, we recommend using an
initial window size of 40 heartbeat cycles. As shown by the
pink square in Figure 12(b), this configuration achieves a
balanced performance in both average and tail latency.

TABLE I: Switching duration analysis.
Waiting Time Election Duration Total Duration

Raft 150 - 300 ms 234 ms 384 - 534 ms
GeoLM 30 us 153 ms 154 ms

Cost of Leader Handover. Table I gives a breakdown of the
switching duration of GeoLM. We analyze hundreds of leader
switching and find that the target node in GeoLM initiates an
election within 30 us after receiving the Msg.logCompletion.
The average switching duration is 153 ms. In contrast, Raft
needs to wait for a heartbeat timeout of 150-300 ms to begin
an election, with an average switching duration of 234 ms.
Our total switch time saves at least 59.90% per switching.
Effectiveness of Log Pre-Synchronization. We indepen-
dently tested the impact of log pre-synchronization during

Raft Geo-Raft GeoLM

120

130

140

Av
er

ag
e

La
te

nc
y

(m
s)

Node 1 Node 2 Node 3

(a) Read-write ratio

0 5 10 15
Epoch

140

160

180

200

Th
ro

ug
hp

ut
 (r

eq
s/

se
c)

GeoLM (5:3:2)
GeoLM-Poor (5:3:2)

Raft (1:1:1)

(b) Popularity

Fig. 14: (a) Performance impact of read-write ratio. The
read-write ratio for Node 1 is 50:50, Node 2 is 95:5, and
Node 3 is 100:0. (b) Performance impact of popularity.
GeoLM-Poor represents a GeoLM variant without con-
sidering the node’s popularity. GeoLM (5:3:2) represents
the full implementation of GeoLM under the condition
that the read/write requests to Nodes 1, 2, and 3 are in
proportions of 50%, 30%, and 20%, respectively.

handover on overall performance. As shown in Figure 13,
using pre-synchronization significantly reduces average re-
sponse time under all types of workloads. This advantage
becomes particularly pronounced as the write ratio increases
(from Workload C to A). This is because a higher write
ratio requires more log synchronization, thus amplifying the
benefits of log pre-synchronization. Consequently, log pre-
synchronization enhances overall performance and achieves
greater performance gains under a higher write ratio.
Performance impact of read-write ratio. We simulate dif-
ferent practical application scenarios by controlling the read-
write ratio of the nodes while keeping the cluster latency and
popularity conditions consistent. Specifically, we set the read-
write ratios of Node 1, Node 2, and Node 3 to 50:50 (read-
write balance), 95:5 (more reads and less writes), and 100%
read (i.e., read-only), respectively. We test the performance
of each node in each cluster (Raft, Geo-Raft, and GeoLM)
under such extreme read-to-write ratio differences, specifically
showing the average latency in Figure 14(a). We observed
varying overall performances among the three solutions under
identical cluster read-write ratio settings, particularly in han-
dling uneven read-write ratios. Among them, Raft exhibits the
weakest performance in managing such disparities. Geo-Raft
shows some improvements overall, attributed to the backup
of secretary nodes, though these gains are not substantial. In
contrast, GeoLM demonstrates intelligent handling of uneven
load distribution, seamlessly transitioning the leader node and
achieving significant performance enhancements. Specifically,
GeoLM performs approximately 10.76% better than Raft and
about 7.27% better than Geo-Raft in these scenarios.
Performance impact of popularity. In this experiment, we
adjust the user request number for 3 nodes while keeping
other variables consistent to validate the effectiveness of Ge-
oLM regarding popularity. GeoLM-Poor represents a GeoLM
variant without considering the node’s popularity. GeoLM
(5:3:2) represents the full implementation of GeoLM under
the condition that the read/write requests to Nodes 1, 2, and

SwiftPaxos GeoLM EPaxos CURP

1000

1500

2000

2500
Th

ou
gh

pu
t (

re
qs

/s
ec

)

Fig. 15: Performance comparison with more schemes.

3 are in proportions of 50%, 30%, and 20%. GeoLM-Poor
(5:3:2) represents the GeoLM-Poor under the condition that
the read/write requests to Nodes 1, 2, and 3 are in proportions
of 50%, 30%, and 20%, respectively. Raft (1:1:1) represents
the Raft under the condition that the read/write requests are
uniformly distributed. Figure 14 (b) shows the results. We
find that throughput in Raft (1:1:1) distributed is stable. In
the context of non-uniform requests, the system throughput is
initially lower than Raft cluster and consistently remains low.
This is due to the redirection of requests before processing.
For GeoLM (5:3:2), the initial throughput is low, but as the
epochs progress (1 epoch = 10 min), the throughput gradually
increases, approaching and even surpassing the performance of
Raft (1:1:1). The reason for this improvement is that, despite
the differing request popularity levels for each node and the
potential need for many request redirections, the popularity
optimization eventually influenced the switching of the leader
node. From the logs, we observe that by the second epoch,
the system already completed the leader switching. Subse-
quently, the system throughput of GeoLM (5:3:2) significantly
improves, surpassing the performance of both GeoLM-Poor
(5:3:2) and Raft (1:1:1).
Comparison with more schemes. We further conduct ex-
periments to compare GeoLM with a classic leaderless dis-
tributed consensus protocol EPaxos, the most recent single-
leader consensus protocol SwiftPaxos, and a primary-backup
replication protocol CURP based on the public repository
[32]. We try our best to ensure these schemes run under
similar conditions, including network fluctuations, popularity,
and read-write ratios. Figure 15 indicates that GeoLM achieves
considerably good performance compared to EPaxos, Swift-
Paxos, and CURP, thus effectively validating the capabilities
of GeoLM. It is worth noting that although EPaxos approaches
its best performance, GeoLM’s worst-case performance is far
superior. This reveals that GeoLM exhibits better stability.
D. Real-World Testbed Deployment

We deploy GeoLM in two representative scenarios to inves-
tigate the GeoLM’s performance over WAN links.
Two-region-three-center deployment: We deploy three cloud
servers across two regions: two servers in different data centers
in Beijing and one in Guangzhou, forming a two-region-
three-center cluster. This type of cluster represents the most
commonly deployed scheme in primary-backup solutions, such
as Huawei’s primary-backup database systems, known for its
resilience against the failure of a data center [48]. As illustrated
in Figure 16, the final results demonstrate that GeoLM out-
performed both Raft and Geo-Raft significantly. Specifically,

Raft Geo-Raft GeoLM70

80

90

La
te

nc
y

(m
s)

Raft Geo-Raft GeoLM
220

240

260

280

Th
ro

ug
hp

ut
 (r

eq
s/

se
c)

(a) Latency (b) Throughput

Fig. 16: Two-region-three-center scenario.

Raft Geo-Raft GeoLM

80

100

La
te

nc
y

(m
s)

Raft Geo-Raft GeoLM
220

240

260

280

Th
ro

ug
hp

ut
 (r

eq
s/

se
c)

(a) Latency (b) Throughput

Fig. 17: Three-region-five-center scenario.

GeoLM achieved a 13.43% and 17.93% improvement in
throughput compared to Raft and Geo-Raft, respectively. In
terms of average latency, GeoLM exhibited 15.26% lower
latency than GeoRaft and 11.89% lower latency than Raft.
For tail latency, GeoLM showed reductions of 21.12% and
18.41% compared to GeoRaft and Raft, respectively.
Three-region-five-center deployment: We deploy five cloud
servers across three regions: one in Guangzhou, two in differ-
ent data centers in Beijing, and two in different data centers
in Shanghai, forming a three-region-five-center cluster, Which
represents the most widely discussed and researched scheme
in academia, to withstand the failure of an entire region. As
depicted in Figure 17, the results are as follows: In terms
of throughput, GeoLM outperforms GeoRaft by 28.95% and
Raft by 23.27%. In terms of average latency, GeoLM shows
22.59% lower latency than GeoRaft and 19.02% lower than
Raft. In terms of tail latency, GeoLM demonstrates reductions
of 26.45% compared to GeoRaft and 26.52% to Raft.

VII. CONCLUSION

Leader management becomes significantly more crucial
in geo-distributed databases than in databases confined to
a single data center. We propose GeoLM, which, for the
first time, integrates both network and application dynamics
to proactively optimize leader switching. This significantly
enhances transaction performance while ensuring consistency
and bounding switching costs. In the future, we plan to
open-source GeoLM to drive innovation in the field of geo-
distributed consensus protocols.

ACKNOWLEDGMENTS

We thank the reviewers for their valuable suggestions. We
thank Feng Zhang, Ju Fan, Yueguo Chen, Mengxing Liu,
and Zheng Chen for their guidance and support. We are also
grateful for conversations with and feedback from Zhanhuai
Li and Guoliang Li.

REFERENCES

[1] D. Borthakur, J. Gray, J. S. Sarma, K. Muthukkaruppan, N. Spiegelberg,
H. Kuang, K. Ranganathan, D. Molkov, A. Menon, S. Rash et al.,
“Apache hadoop goes realtime at facebook,” in Proceedings of the 2011
ACM SIGMOD, 2011, pp. 1071–1080.

[2] X. Zhang, H. Wu, Z. Chang, S. Jin, J. Tan, F. Li, T. Zhang, and
B. Cui, “Restune: Resource oriented tuning boosted by meta-learning for
cloud databases,” in Proceedings of the 2021 international conference
on management of data, 2021, pp. 2102–2114.

[3] Z. Chen, F. Zhang, J. Guan, J. Zhai, X. Shen, H. Zhang, W. Shu, and
X. Du, “Compressgraph: Efficient parallel graph analytics with rule-
based compression,” Proceedings of the ACM on Management of Data,
vol. 1, no. 1, pp. 1–31, 2023.

[4] A. Lakshman and P. Malik, “Cassandra: a decentralized structured
storage system,” ACM SIGOPS operating systems review, vol. 44, no. 2,
pp. 35–40, 2010.

[5] A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao, and D. J. Abadi,
“Calvin: fast distributed transactions for partitioned database systems,”
in ACM SIGMOD, 2012, pp. 1–12.

[6] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman,
S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild et al., “Spanner:
Google’s globally distributed database,” ACM TOCS, vol. 31, no. 3, pp.
1–22, 2013.

[7] A. Dragojević, D. Narayanan, M. Castro, and O. Hodson, “{FaRM}:
Fast remote memory,” in 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14), 2014, pp. 401–414.

[8] B. Dageville, T. Cruanes, M. Zukowski, V. Antonov, A. Avanes, J. Bock,
J. Claybaugh, D. Engovatov, M. Hentschel, J. Huang, A. W. Lee, A. Mo-
tivala, A. Q. Munir, S. Pelley, P. Povinec, G. Rahn, S. Triantafyllis, and
P. Unterbrunner, “The snowflake elastic data warehouse,” in Proceedings
of the 2016 International Conference on Management of Data, ser.
SIGMOD ’16, 2016, p. 215–226.

[9] K. Ren, D. Li, and D. J. Abadi, “Slog: Serializable, low-latency, geo-
replicated transactions,” VLDB, vol. 12, no. 11, 2019.

[10] Huawei, “Huawei cloud: Everything as a service,” https://www.
huaweicloud.com/intl/en-us/, 2024.

[11] Amazon, “Aws global infrastructure,” https://aws.amazon.com/
about-aws/global-infrastructure/?nc1=h ls, 2024.

[12] Google, “Introduction to bigquery omni,” https://cloud.google.com/
bigquery/docs/omni-introduction, 2024.

[13] SnowFlake, “Snowflake database,” https://docs.snowflake.com/en/
sql-reference/snowflake-db, 2024.

[14] Terraform, “Deploy federated multi-cloud kubernetes clusters,”
https://developer.hashicorp.com/terraform/tutorials/networking/
multicloud-kubernetes, 2024.

[15] DatenLord, “A high-performance geo-distributed metadata management
system,” https://datenlord.github.io/xline-home/#/, 2024.

[16] Q. Zhuang, X. Shi, S. Liu, W. Lu, Z. Zhao, Y. Chen, T. Li, A. Pan,
and X. Du, “Geotp: Latency-aware geo-distributed transaction pro-
cessing in database middlewares (extended version),” arXiv preprint
arXiv:2412.01213, 2024.

[17] M. Mohiuddin, M. Primorac, E. Stai, and J.-Y. Le Boudec, “Fcr: Fast and
consistent controller-replication in software defined networking,” IEEE
Access, vol. 7, pp. 170 589–170 603, 2019.

[18] W. Li, T. Li, D. Zhang, L. Dai, and Y. Chai, “Distributed consensus al-
gorithms for cross-domain data management: state-of-the-art, challenges
and perspectives,” Big Data Research, vol. 9, no. 4, pp. 2–15, 2023.

[19] Q. Zhang, J. Li, H. Zhao, Q. Xu, W. Lu, J. Xiao, F. Han, C. Yang, and
X. Du, “Efficient distributed transaction processing in heterogeneous
networks,” Proceedings of the VLDB Endowment, vol. 16, no. 6, pp.
1372–1385, 2023.

[20] L. Li, K. Xu, T. Li, K. Zheng, C. Peng, D. Wang, X. Wang, M. Shen,
and R. Mijumbi, “A measurement study on multi-path tcp with multiple
cellular carriers on high speed rails,” in Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication,
2018, pp. 161–175.

[21] T. Li, K. Zheng, K. Xu, R. A. Jadhav, T. Xiong, K. Winstein, and
K. Tan, “Tack: Improving wireless transport performance by taming
acknowledgments,” in Proceedings of the Annual conference of the ACM
Special Interest Group on Data Communication on the applications,
technologies, architectures, and protocols for computer communication,
2020, pp. 15–30.

[22] L. Lamport, “Paxos made simple,” ACM SIGACT News, pp. 51–58,
2001.

[23] D. Ongaro and J. Ousterhout, “In search of an understandable consensus
algorithm,” in USENIX ATC, 2014, pp. 305–319.

[24] J. Xu, W. Wang, Y. Zeng, Z. Yan, and H. Li, “Raft-plus: Improving
raft by multi-policy based leader election with unprejudiced sorting,”
Symmetry, vol. 14, no. 6, p. 1122, 2022.

[25] S. Liu and M. Vukolić, “Leader set selection for low-latency geo-
replicated state machine,” IEEE TPDS, vol. 28, no. 7, pp. 1933–1946,
2016.

[26] F. Ryabinin, A. Gotsman, and P. Sutra, “Swiftpaxos: Fast geo-replicated
state machines,” in USENIX NSDI, 2024.

[27] Z. Xu, C. Stewart, and J. Huang, “Elastic, geo-distributed raft,” in
IEEE/ACM IWQoS, 2019.

[28] S. J. Park and J. Ousterhout, “Exploiting commutativity for practical
fast replication,” in USENIX NSDI, 2019.

[29] A. Charapko, A. Ailijiang, and M. Demirbas, “Pigpaxos: Devouring the
communication bottlenecks in distributed consensus,” in ACM SIGMOD,
2021.

[30] L. Lamport, “Fast paxos,” Springer DISC, vol. 19, pp. 79–103, 2006.
[31] I. Moraru, D. G. Andersen, and M. Kaminsky, “There is more consensus

in egalitarian parliaments,” in ACM SOSP, 2013.
[32] F. Nawab, D. Agrawal, and A. El Abbadi, “Dpaxos: Managing data

closer to users for low-latency and mobile applications,” in ACM
SIGMOD, 2018, pp. 1221–1236.

[33] R. Taft, I. Sharif, A. Matei, N. VanBenschoten, J. Lewis, T. Grieger,
K. Niemi, A. Woods, A. Birzin, R. Poss et al., “Cockroachdb: The
resilient geo-distributed sql database,” in ACM SIGMOD, 2020, pp.
1493–1509.

[34] W. Zhou, Q. Peng, Z. Zhang, Y. Zhang, Y. Ren, S. Li, G. Fu, Y. Cui,
Q. Li, C. Wu et al., “Geogauss: Strongly consistent and light-coordinated
oltp for geo-replicated sql database,” ACM SIGMOD, vol. 1, no. 1, pp.
1–27, 2023.

[35] Huawei, “Gaussdb,” https://www.huaweicloud.com/intl/en-
us/product/gaussdb.html, 2024.

[36] PingCAP, “Tidb,” https://www.pingcap.com/tidb/, 2024.
[37] A. Cloud, “Polardb,” https://www.alibabacloud.com/en/product/polardb?

p lc=1, 2024.
[38] A. Verbitski, A. Gupta, D. Saha, M. Brahmadesam, K. Gupta, R. Mittal,

S. Krishnamurthy, S. Maurice, T. Kharatishvili, and X. Bao, “Amazon
aurora: Design considerations for high throughput cloud-native relational
databases,” in ACM SIGMOD, 2017, pp. 1041–1052.

[39] Neon, “Neon,” https://neon.tech/, 2024.
[40] R. Neiheiser, M. Matos, and L. Rodrigues, “Kauri: Scalable bft con-

sensus with pipelined tree-based dissemination and aggregation,” in
Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems
Principles, 2021, pp. 35–48.

[41] ETCD, “Etcd-raft,” https://github.com/etcd-io/etcd, 2024.
[42] E. Sakic, P. Vizarreta, and W. Kellerer, “Seer: Performance-aware leader

election in single-leader consensus,” arXiv preprint arXiv:2104.01355,
2021.

[43] T. Li, D. Xu, B. Wu, X. Guo, D. Jiang, C. Luo, W. Lu, and X. Du,
“Transmission in wide-area deterministic networking: A survey,” Journal
of Software, pp. 1–30, 2024.

[44] L. Foundation, Traffic Control (tc) and Network Emulation (netem),
2024, accessed: 2024-07-23. [Online]. Available: https://man7.org/linux/
man-pages/man8/tc.8.html

[45] I. Amazon Web Services, AWS Latency Monitoring, 2024, accessed:
2024-07-23. [Online]. Available: https://aws.amazon.com/cloudwatch/

[46] F. N. Fritsch and R. E. Carlson, “Monotone piecewise cubic interpola-
tion,” SIAM Journal on Numerical Analysis, pp. 238–246, 1980.

[47] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in ACM symposium
on Cloud computing, 2010, pp. 143–154.

[48] Huawei Cloud, “Two-site and three-center disaster recovery solution,”
2024, accessed: 2024-07-22. [Online]. Available: https://support.
huaweicloud.com/intl/en-us/bestpractice-sdrs/sdrs bp cbr 0000.html

